ШОЛУ

МРНТИ 76.33.37.43

ВЛИЯНИЕ МИКРОКЛИМАТА НА ЗДОРОВЬЕ РАБОТАЮЩЕГО НАСЕЛЕНИЯ

Б.Ж. Смагулова, А.Ж. Шадетова, А.К. Искакова, Г.Б. Кумболатова

РГП на ПХВ «Национальный центр гигиены труда и профессиональных заболеваний» МЗ РК, г. Караганда

В статье освещены вопросы оценки параметров микроклимата в производстенных помещениях и их влияние на здоровье работающего населения.

Ключевые слова: температура воздуха, относительная влажность, скорость движения воздуха, тепловое облучение, тепловая нагрузка среды

В процессе трудовой деятельности человек подвергается комплексу производственных факторов производственной среды и трудового процесса. Одним из основных факторов является микроклимат производственных помещений, который определяется совместно действующими на организм человека температурой, относительной влажностью и скоростью движения воздуха, а также температурой окружающих поверхностей [1].

Микроклимат производственных помещений, где пребывают работники в течение всей рабочей смены, играет существенную роль в формировании иммунитета, работоспособности, так чем дольше мы пребываем в условиях неблагоприятного микроклимата, тем сильнее это сказывается на работе нашего организма [2-4].

Роль микроклимата в жизнедеятельности человека предопределяется тем, что последняя может нормально протекать лишь при условии сохранения температурного гомеостаза организма, который достигается за счёт системы терморегуляции и напряжения деятельности других функциональных систем: сердечнососудистой, выделительной, эндокринной, а также систем, обеспечивающих энергетический, водно-солевой и белковый обмены. Напряжение функционального состояния организма, обусловленное воздействием неблагоприятного микроклимата, может сопровождаться ухудшением здоровья, которое усугубляется воздействием на организм других вредных производственных факторов (вибрация, шум, химические вещества и др.) [5-7].

Оценка микроклимата проводится на основе измерении его параметров на всех местах пребывания работника в течение смены и сопоставления с нормативами СанПиН 2.2.4.548-96 по показателям: температура, влажность воздуха, ско-

ISSN 1727-9712

Гигиена труда и медицинская экология. №2 (59), 2018

рость движения воздуха, тепловое излучение. Если измеренные параметры соответствуют требованиям СанПиН 2.2.4.548-96 то условия труда по показателям микроклимата характеризуются как оптимальные (1 класс) и допустимые (2 класс) [8]. Для нормального теплового самочувствия человека важно, чтобы температура, относительная влажность и скорость движения воздуха находились в определенном соотношении. Метеорологические условия, в рабочих помещениях нормированные по основным ее показателям различны для теплого и холодного периодов года, для различных по тяжести видов работ, выполняемых в этих помещениях (легкие, средней тяжести и тяжелые). Кроме того, нормируются верхние и нижние допустимые пределы этих показателей, которые должны соблюдаться в любом рабочем помещении, а также оптимальные показатели, обеспечивающие наилучшие условия работы.

На рабочих местах предпочтительны оптимальные микроклиматические условия, в котором при длительном и систематическом пребывании человека сохраняется нормальное функциональное и тепловое состояние организма без напряжения механизмов терморегуляции. При этом ощущается тепловой комфорт (состояние удовлетворения внешней средой) и обеспечивается высокий уровень работоспособности.

Допустимые микроклиматические условия при длительном и систематическом воздействии на человека могут вызвать преходящие и быстро нормализующиеся изменения функционального и теплового состояния организма и напряжение механизмов терморегуляции, не выходящие за пределы физиологических приспособительных возможностей. При этом не нарушается состояние здоровья, но возможны дискомфортные теплоощущения, ухудшение самочувствия и снижение работоспособности [9,10].

Самым важным показателем комфортности является температура помещения. От температуры напрямую зависит и влажность воздуха. Низкие температуры провоцируют отдачу тепла организмом человека, тем самым снижая его защитные функции. Если в помещении установлена некачественная теплотехника, то люди будут постоянно страдать от переохлаждений, подвергаться частым простудам, инфекционным заболеваниям и т.д.

Очень высокая температура в помещении (более 27^{0} C) влечёт за собой не меньшие проблемы. Борясь с жарой, организм выводит соль из организма. Такая ситуация также чревата снижением иммунитета, нарушением водно-солевого баланса, который регулирует работу многих систем в организме.

Температура воздуха оказывает большое влияние на самочувствие человека и производительность труда. Высокая температура воздуха в производственных помещениях при сохранении других параметров вызывает быструю утомляемость работающего, перегрев организма и большое потовыделение. Это ведет к снижению внимания, вялости и может оказаться причиной возникновения несчастного случая [11-13]. Следует иметь в виду, что температура воздуха в помещениях повышается на 1-2°С и более на каждый метр их высоты и может достигать вверху 40-50°С. Низкая температура может вызвать местное и общее охлаждение организма и стать причиной ряда простудных заболеваний — ангины, катара верхних дыхательных путей [14,15].

Параметры влажности воздуха в большой степени зависят от температуры. Если в помещении нет специальных увлажнителей воздуха, то чем выше температура, тем суше будет воздух. Здоровый человек, попав в помещение с сухим воздухом, почувствует дискомфорт уже через 10-15 минут. Если же человек уже простужен, он начнёт кашлять. В меру влажный воздух (40-60%) создаст комфортные условия для работ и отдыха. В зимний период он способствует укреплению иммунитета, так как не позволяет пересыхать слизистой и становиться уязвимой для вирусов. В летний период при комфортной влажности легче переносить жару, поддерживать здоровое состояние кожи и пр.

При оценке влажности в РК приняты следующие понятия: максимальная влажность, абсолютная влажность, относительная влажность.

Оптимальной является относительная влажность 60-40%. Санитарными нормами допустима относительная влажность воздуха, в производственных помещениях установлена с учетом во взаимозависимости с его температурой и скоростью движения воздуха [16-18].

Фактором микроклимата, на который многие не обращают внимания, является скорость движения воздуха, но в зависимости (опять же) от температуры воздуха скорость его движения влияет на организм по разному. Например, при температуре до 33-35 градусов скорость в 0,15 м/с комфортна, так как при этом воздух оказывает освежающий эффект. Если температура выше 35 градусов, то эффект будет обратным.

Скорость воздуха на рабочих местах в производственных помещениях имеет большое значение для создания благоприятных условий труда. Надо отметить, что организм человека начинает ощущать воздушные потоки при скорости около 0,15 м/с. Причем, если эти воздушные потоки имеют температуру до 36°C, организм человека ощущает освежающее действие, а при температуре свыше 40°C они действуют угнетающе [19,20].

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий в производственных помещениях [21-25]. Для оценки сочетанного воздействия параметров микроклимата в целях осуществления мероприятий по защите работающих от возможного перегревания используется интегральный показатель тепловой нагрузки среды (ТНС-индекс). Индекс тепловой нагрузки среды характеризуется сочетанным действием на организм человека параметров микроклимата (температуры, влажности, скорости движения воздуха и теплового облучения). Как правило, оценку по ТНС-

индексу проводят в случаях превышения максимально допустимого уровня температуры или при наличии теплового облучения [26].

Микроклимат производственных помещений, складывающийся из температуры воздуха в помещении, инфракрасного и ультрафиолетового излучения от нагретого оборудования, раскаленного металла и других нагретых поверхностей, влажности воздуха и его подвижности, определяются двумя основными причинами: внутренними (тепло и влаговыделения) и внешними (метеорологические условия). Первые из них зависят от характера технологического процесса, оборудования и применяемых санитарно-технических устройств и, как правило, носят относительно постоянный характер для каждого цеха или отдельного участка производства; вторые — сезонного характера, резко изменяются в зависимости от времени года. Степень влияния внешних причин во многом зависит от характера и состояния наружных ограждений производственных зданий (стен, кровли, окон, въездных проемов и т.п.), а внутренних - от мощностей и степени изоляции источников выделения тепла, влаги и эффективности санитарно-технических устройств.

Мероприятия по обеспечению нормальных метеорологических условий на производстве, как и многие другие, носят комплексный характер. Существенную роль в этом комплексе играют архитектурно-планировочные решения производственного здания, рациональное построение технологического процесса и правильное использование технологического оборудования, применение ряда санитарнотехнических устройств и приспособлений. Помимо этого, используются меры индивидуальной защиты и личной гигиены. Это радикально не улучшает метеорологических условий, но защищает рабочих от их неблагоприятного воздействия [27].

Существенную роль в оздоровлении условий труда играют механизация и автоматизация технологических процессов. Эта позволяет удалить рабочее место от источников тепловыделений, а нередко и значительно сократить их воздействие [28]. Микроклимат «рабочего места» напрямую связан со здоровьем и с производительностью труда сотрудников [28].

Результаты исследований российских ученых показали значимость спецодежды в формировании термической нагрузки среды и способы корректировки неблагоприятного влияния на теплообмен человека. Применительно к охлаждающей среде разработаны способы прогнозирования риска охлаждения человека в зависимости от факторов окружающей среды, теплофизических параметров одежды, физической активности [29]. В условиях нагревающего микроклимата, требуется не только тщательный контроль использования средств индивидуальной защиты, но и соблюдение работниками питьевого режима, направленного на компенсацию нарушений водно-электролитного баланса.

Благоприятные метеорологические условия на производстве являются важным фактором в обеспечении высокой производительности труда и в профилактике заболеваний. При не соблюдении гигиенических норм микроклимата снижа-

ется работоспособность человека, возрастает опасность возникновения травм и ряда заболеваний, в том числе профессиональных [11].

Каждый работодатель обязан обеспечить сотрудникам комфортные и безопасные условия труда. С этой целью в организации периодически должна проводиться аттестация рабочих мест.

Гигиенические требования к микроклимату производственных помещений позволяют поддерживать на рабочем месте здоровую, благоприятную для организма человека обстановку.

В целях профилактики неблагоприятного воздействия микроклимата используются защитные мероприятия: внедрение современных технологических процессов, исключающих воздействие неблагоприятного микроклимата на организм человека; организация принудительного воздухообмена в соответствии с требованиями нормативных документов (кондиционирование, воздушное душирование, тепловые завесы и др.); компенсация неблагоприятного воздействия одного параметра изменением другого; применение спецодежды и средств индивидуальной защиты, организация специальных помещений с динамическими параметрами микроклимата (комнаты для обогрева, охлаждения, др.); физически обоснованная регламентация режимов труда и отдыха (сокращенный рабочий день, регламентированное время для обогрева и др.); правильная организация систем отопления и воздухообмена.

Таким образом, правильный и качественный микроклимат производственных помещений обеспечивает предприятие непрерывной работой в любое время года, а также максимальной явкой всех сотрудников на рабочие места.

Литература

- 1. ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны».
- 2. https://cyberleninka.ru/article/n/osobennosti-mikroklimata-na-rabochih-mectah Микроклимат производственных помещений.
- 3. https://otherreferats.Allbest.ru/life/00147352.0.html Производственный микроклимат и его влияние на организм человека.
- 4. Бухтияров И.В., Юшкова О.И., Шардакова Э.Ф. Актуальные проблемы физиологии труда и профилактической эргономики // Медицина труда и пром. экология. 2017. №9. С.32-33.
- 5. Фокин К.Г., Бобкова Т.Е. Экономическая оценка и обоснование решений в области управления риском здоровья населения // Гигиена и санитария. 2011. \mathbb{N}_2 2. C.25-28.
- 6. Афанасьева Р.Ф., Бессонова Н.А., Бурмистрова О.В., Бурмистров В.М., Лосик Т.К. Производственный микроклимат. Итоги и перспективы исследований. // Медицина труда и пром. экология. 2013.- №6(30). С.30-35. ISSN 1727-9712 Гигиена труда и медицинская экология. №2 (59), 2018

- 7. Карелин А.О., Гедерим В.В., Соколовский В.В., Шаповалов С.Н. О влиянии космогеофизических и метеорологических факторов на показатели неспецифической резистентности организма // Гигиена и санитария. 2008. №1. С.29-33.
- 8. СанПиН 2.2.548-96 «Гигиенические требования к микроклимату производственных помещений».
- 9. http://ohrana-bgd.narod.ru/proizv Гигиена труда. Метеорологические условия. Влияния метеорологических условий на организм.
- 10. Руководство Р 2.2.013-94. Гигиена труда. Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести и напряженности трудового процесса. Госкомсанэпиднадзор. Астана, 2000. 42 с.
- 11. Измеров И.Ф., Суворов Г.А., Куралесин Н.А. и др. Физические факторы. Эколого-гигиеническая оценка и контроль. Практическое руководство в 2 томах. М.: Медицина, 1999. Т.І. 425 с.
- 12. http://ecolab21.ru/izmerenie_microclimata Измерение микроклимата на рабочих местах и в помещениях.
 - 13. СНиП 2.04.05-91 «Отопление, вентиляция и кондиционирование».
- 14. Прокопенко Л.В., Афанасьева Р.Ф., Бессонова Н.А., Бурмистрова О.В., Лосик Т.К., Константинов Е.И. Методические подходы к оценке микроклимата на рабочих местах при использовании различных видов спецодежды для защиты от вредных производственных факторов // Медицина труда и пром. экология. 2014.- N01. C.56-58.
- 15. Белов С.В., Ильницкая А.В., Козьяков А.Ф. Безопасность жизнедеятельности: учебник для вузов. 4-е изд. испр. и доп. М.: Высшая школа, 2004. 606 с.
- 16. Юрьева Е.В. Физиолого-гигиенические основы профилактики заболеваний сердечнососудистой системы персонала предприятия электрических сетей: Автореф. ... канд. мед. наук. М., 2004. 23 с.
- 17. Захаренков В.В., Панаиотти Е.А. Оценка условий труда и риска для здоровья работников в основных цехах тепловых электростанций // Профессия и здоровье: Материалы V Всероссийского конгресса. М., 2006. С.151-152.
- 18. Красовский В.О., Янбухтина Г.А. Комбинированные профессиональные риски работников // Матер. VII Всероссийского конгресса «Профессия и здоровье». М., 2008. С.134-136.
- 19. Иванова С.А. Оценка и управление рисками на предприятии // Экология и промышленность Казахстана. 2008. №3(8). С.4-5.
- 20. Варламова Н.Г., Евдокимов В.Г. Оценка внешнего дыхания у девушек и женщин Европейского Севера // Гигиена и санитария. 2008. №1. С.16-19.
- 21. Гигиенические нормативы к физическим факторам, оказывающим воздействие на человека № 169 от 28 февраля 2015г.
 - 22. СНиП 23-05-95 Естественное и искусственное освещение. М., 2011.

- 23. http://studbooks.net/1389199/bzhd/kriterii_usloviy_truda_pokazatelyam_mi_kroklimata Критерии условий труд по показателям микроклимата. Классификация условий труда.
- 24. Методические рекомендации «Оценка теплового состояния человека с целью обоснования гигиенических требований к микроклимату рабочих мест и мерам профилактики охлаждения и перегревания» № 5168-90 от 05.03.90 / В сб.: Гигиенические основы профилактики неблагоприятного воздействия производственного микроклимата на организм человека. М., 1991. В.43. С.192 211.
- 25. Серебряков П.В., Самыкин С.В. Влияние нагревающего микроклимата на работников кузнечно-прессового производства // Медицина труда и пром. экология. 2017. N 9. C.171.
- 26 http://www.eksis.ru/technical-support/theory-and-practice/heat-load-of-environment.php Определение индекса тепловой нагрузки среды. Условия труда.
- 27. http://studbooks.net/1389198/bzhd/intensivnoe_teplovoe_obluchenie Интенсивное тепловое облучение.
- 28. http://www.estula.ru/articles/mikroklimat/ Показатели микроклимата и гигиенические требования к ним.
- 29. Иванов И.В., Афанасьева Р.Ф., Лосик Т.К. Оценка средств активной защиты от холодовых воздействий дистальных отделов рук и ног // Медицина труда и пром. экология. 2008. N26. C.48-51.

Тұжырым

Мақалада өнеркәсіптік ғимараттардағы микроклимат параметрлерін бағалаудың сұрақтары және олардың жұмыс істейтін халықтың денсаулығына әсері қарастырылады.

Tүйінді сөздер: ауа температурасы, салыстырмалы ылғалдылық, ауа қозғалысының жылдамдығы, жылумен сәулелендіру, ортаның жылулық жүктемесі

Summary

In article the estimation of parameters of microclimate in the production of wall spaces and their impact on the health of the working population.

Key words: air temperature, relative humidity, speed of air movement, thermal radiation, heat load environment